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Abstract 

The possibility of amorphization of the/3-phase in the Cr-Ti system is considered using free energy calculations 
based on the Miedema method. The results of this calculation are also compared with those obtained by other 
workers using phase diagram fitting and the cluster variation method. These calculations do not suggest any 
possibility of amorphization, called spontaneous vitrification, as has been reported in the literature. It is also 
found that strain energy can make only a negligible contribution to the overall free energy and thus cannot 
destabilize the /3-phase. The possibility of spinodal decomposition of the /3-phase is also considered. 

1. Introduction 

For the past few years there has been considerable 
interest in the phase transformation behaviour of the 
b.c.c. /3-phase of binary Cr-Ti alloys. Blatter and von 
Allmen [1] reported that laser-quenched thin films of 
/3-Cr30Ti7o can be amorphized by annealing at 873 K. 
They termed this transformation spontaneous vitrifi- 
cation. Later, Blatter et al. [2] reported that a similar 
transformation is also possible for bulk samples. Al- 
though amorphization in the solid state is well known 
by other methods (see, for example, ref. 3) this is 
apparently the only example of a polymorphous crystal- 
to-amorphous transformation. We have previously re- 
ported our failure to observe this transformation both 
in thin films and bulk alloys [4]. Mizutani [5] and Sinkler 
and Luzzi [6] have also reported similar failures. 

Despite our failure to observe amorphization, we did 
observe several indications of the instability of the /3- 
phase: (i) broad peaks in X-ray diffraction patterns [4], 
(ii) copious diffuse scattering in the electron diffraction 
patterns [4], and (iii) a step in the specific heat Cp as 
observed in differential scanning calorimetry [7]. 

These results have led us to consider the thermo- 
dynamics of the /3-phase. We have calculated free 
energies of the /3 and amorphous phases by the well 
known semi-empirical Miedema method [8]. We correct 
an earlier calculation presented by Gallego et al. [9]. 

We also compare the results obtained by the Miedema 
method with those obtained by the cluster variation 
method (CVM) and phase diagram fitting of other 
workers. On the basis of such a comparison we have 
proposed an interpolation scheme which can give better 

estimates of the free energies of the various phases. 
Even these interpolations do not suggest any amor- 
phization. 

It has been suggested by various researchers that 
defects can play an important role in making the /3- 
phase unstable with respect to the amorphous phase. 
We therefore made an attempt to estimate the in- 
homogeneous strain in our samples using X-ray mea- 
surements. The results and implications of these mea- 
surements are described. 

Another point of interest in the thermodynamic be- 
haviour of /3-Cr-Ti is spinodal decomposition which 
could be an alternative to amorphization. Menon and 
Aaronson [10] have calculated the coherent spinodal 
temperatures of/3-Cr-Ti. However, Ikematsu et al. [11] 
have observed spinodal decomposition at temperatures 
much above those predicted by Menon and Aaronson. 
In this light we have re-evaluated the calculation of 
Menon and Aaronson [10] and found that their cal- 
culation is in error. A new corrected version of the 
calculation is presented and discussed. 

2. Free energies based on Miedema's model 

2.1. The Miedema model  
Miedema and coworkers developed a semi-empirical 

approach to the estimation of heat of mixing of binary 
alloys. An outline of the method is presented here for 
the purpose of describing the present calculations. 

The heat of formation AH of a binary crystalline 
solid solution Al_xBx is taken to be 

= z~kH chem -~ 1~/elas + L~/struc (1) 
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where AH them, /~L/elas, and M-P T M  are respectively the 
chemical, elastic and structural contributions. The chem- 
ical component /~E/chem is given by 

I~Hchem=XAXB[XB~chem(A in B)-I-XA~khchem(B in A)] 

(2) 

where XA, XB are atom fractions of components A and 
B and Ah Ch~ (A in B) are listed for various binary 
systems in Tables V-4.02 to V-4.26 in de Boer et al. 
[8]. The elastic component is given by 

AH ~"~ =xAxB[xBAh~'a~(A in B)-]-XA~I~elas(B in g)]  (3) 

where Ah ~l~ (i in j) is given by 

2Ki~j ( Wi* - Wj* ) 
Ahe'"~(i in j) - 3Kyj* + 4/~jV~* (4) 

where Ki is the bulk modulus of solute i (i.e. A or B), 
/zj is the shear modulus of the matrix j, and V~* and 
Vj* are the molar volumes of A and B corrected for 
charge transfer effects. The structural component M-P TM 

is given by 

A / - P t ~  = E., ,oy(Z~,,oy) - [xAEA(ZA) --XBEB(ZB)] (5) 

where Eal,oy(Zalloy), EA(ZA) and EB(ZB) are the lattice 
stabilities of the alloy, element A and element B, 
evaluated at the respective values of their average 
number of valence electrons (i.e. number of d + s elec- 
trons) Z,,oy, ZA and ZB per atom. Values of the lattice 
stability parameter for the three main crystalline forms 
(b.c.c.h.c.p. and f.c.c.) of the transition metal elements 
have been estimated as a function of the number of 
valence electrons per atom by Miedema and coworkers 
and are available in de Boer et al. [8]. 

The heat of formation of an amorphous binary alloy 
is considered to be simply the chemical component 
described above, it being assumed that the elastic and 
structural components are negligible. 

To calculate the mixing free energy AG of various 
phases, the entropy of mixing AS is also required, and 
in the Miedema approach is assumed to be ideal: 

AS = --R(XA In XA +XB In XB) (6) 

where R is the gas constant. 
Apart from the mixing terms described above, we 

also need to estimate the free energy difference between 
amorphous and crystalline phases for the unmixed pure 
components A and B. Miedema proposes a simplified 
approximation for the free energy difference AG/be- 
tween the crystalline and amorphous phases of pure 
component i as 

m a  i = o l ( Z i  m - -  T )  ( 7 )  

where T/" is the melting point of component i, T is 
the temperature and a is an empirical parameter set 
equal to 3.5 J mol- '  K -1. 

2.2. Existing calculation for  Cr-Ti  
Gallego et al. [9] calculated the free energies of/3 

and amorphous phases in the Cr-Ti system. Here we 
correct a mistake in their calculation and evaluate the 
free energies at 873 K, which is the temperature of 
interest for spontaneous vitrification. 

Equation (7) for the free energy difference between 
crystalline and amorphous phases can be used for 
chromium and /3-Ti at a temperature T=77 K with 
T~r=2130 K and T m -1943 K [12] yielding /3 > -Ti  - -  

AGc~ = 7.2 kJ mol-~ (at 77 K) 

AG/3_T~ = 6.5 kJ mol-~ (at 77 K) 

Although Gallego et al. [9] have shown the difference 
between amorphous and crystalline chromium correctly, 
the difference between amorphous and /3-Ti is shown 
only as 2.2 kJ mol-1 (our measurement from their plot) 
instead of 6.5 kJ mol-1 as calculated above. The dif- 
ference between free energies of a-Ti and amorphous 
titanium phases in their figure comes close to 6.5 kJ 
mol-1. Thus Gallego et al. [9] have set the free energy 
difference between the amorphous phase and ot-Ti equal 
to the difference between the amorphous phase and 
/3-Ti. (Note that eqn. (7) could be used to calculate 
AG~_TI if the metastable melting point of a-Ti were 
known.) When the correct AG/3_Ti is used, the free 
energy curve for the /3-phase always lies below that 
for the amorphous phase, never intersecting it in the 
manner shown by Gallego et al. [9]. Thus spontaneous 
vitrification for the /3-phase is not predicted even at 
77 K, at variance with their claim. 

To calculate Ah °'as (A in B) defined in eqn. (4) and 
required for calculation of the elastic component of 
the enthalpy of mixing in eqn. (3), Gallego et al. [9] 
used the bulk and shear moduli of a-Ti. Since clearly 
the moduli of/3-Ti should be used, this could introduce 
significant error in the calculations. 

2.3. New calculation for Cr-Ti  
In the present work only the free energies relevant 

for the amorphization of the /3-phase are considered. 
The temperature of most interest for the calculation 
is that corresponding to the suggested spontaneous 
vitrification, i.e. 873 K. 

Following the procedure outline in Section 2.1, the 
chemical, elastic and structural components of the 
enthalpy of mixing are evaluated. The chemical com- 
ponent is obtained from eqn. (2) using the parameters 
from Table V-4.04 of de Boer et al. [8]: 
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Ah~h~m(Cr in Ti)= - 2 7  kJ tool -1 

z~ihch~m(Ti in Cr)= - 3 3  kJ mol- 

To calculate the elastic component using eqns. (3) 
and (4) we need the bulk and shear moduli of chromium 
and/3-Ti at the temperature of interest. For chromium, 
single-crystal elastic moduli data are available from 
Bolef and de Klerk [13] from 80 K to 500 K. The 
values at 873 K were estimated by extrapolating their 
data, as shown in Fig. 1. For /3-Ti there are no data 
available below 1150 K, where it is no longer a stable 
phase (perhaps explaining why Gallego et al. [9] used 
the moduli of a-Ti in place of those for/3-Ti). However, 
Fisher and Dever [14, 15] have measured the single- 
crystal elastic constants in the/3-phase in Cr-Ti alloys 
with 28.37, 13.81, 9.36 and 6.98 at.% chromium at 298 
K and 1273 K. The composition dependence of the 
moduli is, except for C~2, to a good approximation 
parabolic, permitting straightforward extrapolation to 
pure /3-Ti (see Fig. 2(a) for 298 K and Fig. 2(b) for 
1273 K; fitting parameters in Table 1). Fisher and Dever 
[14] show that the variation of the moduli between 
these temperatures is linear. To obtain the polycrys- 
talline bulk and shear moduli from these single-crystal 
data, the well known Voigt and Reuss averaging methods 
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Fig. 1. Elastic stiffness constants, Cn,  C** and C' (C' = ( C u -  C12)/ 
2) for pure chromium as measured by Bolef and de Klerk [13]. 
The dotted lines indicate the linear fits used in the present  work 
to extrapolate to higher temperatures.  

were used (see, for example, ref. 16) to obtain re- 
spectively the upper and lower limiting values. For the 
present calculations we employed the mean of the 
upper and lower bounds. 

In using eqn. (4), one also needs to correct the molar 
volumes of pure titanium and chromium for charge- 
transfer effects, as described in de Boer et al. [8]. 

For the structural component of the enthalpy of 
mixing of the /3-phase we use eqn. (5) with Zcr=6, 
ZTi = 4 and Z a l l o y  = X c r Z c r - - - ~ X T i Z T i .  From the data given 
by de Boer et al. [8] we have: 

Ecr(Zcr) = Ebcc(6 ) = -- 12.0 kJ mol-I 

E T i ( Z T i )  =Ebcc(4) = + 2.0 kJ mol -~ 

For the b.c.c, solid solution we need to know 
Ebc~(Za,oy) between Zauoy = 4 to 6. From ref. 8 we have 
Ebcc(4) = + 2.0, Ebcc(5) = -- 9.5, Ebco(5.5) = -- 14.5 and 
Ebbs(6) = -- 12.0 (all values in kJ mol-1). Between these 
points, Eucc is evaluated by a linear interpolation. Note 
that in the present calculation for the structural term, 
b.c.c, fl-Ti is being used as the reference state for the 
pure titanium. Gallego et al. [9] used ~-Ti as the 
reference state. Although this will change the actual 
values of the free energy of the solid solution phase, 
it will not affect the relative positions of the free energies 
of solid solution and amorphous phases. 

The results of the calculation for 873 K, which 
corresponds to the spontaneous vitrification tempera- 
ture, are shown in Fig. 3. It is found that the curve 
for the amorphous phase is still above that for the /3- 
phase at all compositions, showing no possibility of 
spontaneous vitrification. For Ti-40 at.%Cr the dif- 
ference in the free energies of the amorphous and the 
/3-phases is about 4.1 kJ mol 1 

It is of interest to compare the Miedema method 
with other methods of estimating free energies. Sluiter 
and Turchi [17] calculated the Helmholtz free energy 
of/3-Cr-Ti by the cluster variation method (CVM) in 
the tetrahedron approximation. Their result for 400 K 
is shown in Fig. 4. For comparison, the free energy of 
the /3-phase calculated using the Miedema method is 
also shown. It is found that although the two curves 
differ in detail, there is very good general agreement 
between the values calculated by the two methods. 
However, the free energy formula of Murray [18] gives 
a very different value both in magnitude and sign. As 
Murray's formula was obtained by fitting the high 
temperature part of the Cr-Ti phase diagram, it is 
quite likely that it is not accurate at low temperatures. 
However, near the melting point, Murray's formula 
should be applicable as it is able to predict the phase 
diagram accurately. Figure 5 compares the values ob- 
tained by the Miedema method and Murray's fitting 
at the melting point. It is found that near the melting 
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T A B L E  1. The  composi t ion d e p e n d e n c e  of  the elastic constants  
in Cr-Ti  alloys is found to be parabolic  of  the  form: (elastic 
constant ,  in G P a ) = A  +Bx+Cx 2, where  x is the mole  fraction of  
chromium; the  values are given o f  A,  B and C used in fitting 
the data for 298 K and 1273 K, i l lustrated in Fig. 2. 

Elastic 298 K 1273 K 
constant  

A B C A B C 

Cu 106.91 301.51 -414 .98  105.87 103.31 -111 .68  
C~ 36.90 68.93 -108 . 86  34.44 26.18 -34 .45  
C12 104.62 - 9 7 . 1 9  212.81 90.98 - 6 2 . 0 8  124.82 
C'  1.14 199.35 -313 . 90  7.45 82.70 -118 .25  
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according to ref. 1), calculated using the  Miedema  model .  The  
re fe rence  states for  the e lements  are the b.c.c, phases  chromium 
and /3-Ti. 

temperature the Miedema method gives a rather poor 
approximation to the free energy of the fl-CrTi. It can 
be concluded then that Miedema's method is a good 
approximation at lower temperatures (400 K) whereas 
Murray's funct ion is accurate near the melting point 
(1673 K). 

We describe below an ad  hoc  attempt to interpolate 
between these two methods in the hope of obtaining 
reasonable value of free energies at intermediate tem- 
peratures, in particular 873 K of interest for spontaneous 
vitrification, in this discussion we restrict ourselves to 
Cr40Ti60. Wirz et al. [19] have shown that there is a 
step in the specific heat of the fl-phase at about 723 
K, an observation also verified by us [7]. The specific 
heat below 723 K is close to the Dulong and Petit 
value, but above 723 K it is significantly in excess of 
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this value. Extrapolation of Murray's function to lower 
temperature does not take this step into account. It is 
possible, then, to speculate that the difference between 
the values for the fl-phase predicted by the two methods 
can be attributed to an excess specific heat on the high 
temperature side of this step. A step of 19.5 J tool-1 
K-1 at 723 K in the specific heat can bring down the 
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free energy of the /3-phase at 400 K from 3 kJ mol-1, 
predicted by Murray's fitting, to the -9 .2  kJ mol-1 of 
the Miedema method. Although large compared with 
the experimentally determined step in the specific heat 
of about 6 J mo1-1 K -1, it is of the same order of 
magnitude. The difference could perhaps arise if the 
specific heat gradually increases after the step rather 
than staying constant. The free energy of the/3-Cr4oTi6o 
as a function of temperaturecalculated by the methods 

of Miedema and Murray and by the interpolation scheme 
outlined above is shown in Fig. 6(a). 

Let us now consider the liquid or amorphous phase. 
Arguments similar to that presented for the /3-phase 
indicate that Murray's fitting is reliable near the melting 
point whereas Miedema's method is expected to be a 
good approximation at lower temperatures. It is well 
known that the specific heat of a glass-forming system 
rises continuously from the melting point to the glass- 
transition temperature. We assume similar behaviour 
for liquid-Cr4oTi60, with an assumed glass-transition 
temperature Tg of 923 K and an excess specific heat, 
for Tm> T> Tg, given by 

xs _ - E ( T -  Tm) A C p , l i  q - -  ( 8 )  

where E is an adjustable parameter. With E taking the 
value 8.37 J mol -a K -2, the free energy difference 
between the liquid of Murray and the glass of Miedema 
can be accounted for. The free energy of the liq- 
uid-amorphous phase predicted by the methods of 
Miedema and Murray and the suggested interpolation 
is shown in Fig. 6(b). In Fig. 6(c) the interpolated 
values of the free energies of the /3 and amorphous 
phases have been redrawn for comparison. As the curves 
never interest below the melting point, no spontaneous 
vitrification is suggested. 

3. X-ray diffraction measurement of strain in 
/3-Cr-Ti 

It is found that the X-ray diffraction peaks from the 
/3-phase are unusually broad. Blatter et al. [20] reported 
a correlation between peak width and amorphizability: 
the/3-phase in water-quenched bulk samples and laser- 
quenched thin f i l ls  has broader peaks and undergoes 
spontaneous vitrification, whereas melt-spun ribbons 
with narrower peaks do not amorphize. Blatter et al. 
[20] expressed these results in terms of coherence length 
(related to the peak width through the well known 
Scherrer formula; see for example ref. 21, but peak 
broadening can have contributions both from low co- 
herence length and high inhomogeneous strain. Indeed, 
Von Allmen and Blatter [22] have considered strain 
energy as the driving force for spontaneous vitrification. 
In the present work we attempt a quantitative separation 
of coherence length and inhomogeneous strain con- 
tributions to the peak width in our /3-phase samples. 
The samples were made by arc-melting on a water- 
cooled copper hearth in an argon atmosphere. The 
samples were remelted three or four times to ensure 
homogeneity. In the as-cast form the samples showed 
X-ray peaks only from the/3-phase without further heat 
treatment being necessary. 

According to Klug and Alexander [23], theoretical 
considerations and experimental results show that in 
most cases the peak profile due to size broadening is 
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approximately Cauchy, whereas that due to strain is 
approximately Gaussian. In this situation they have 
shown that the following equation is satisfied: 

2 

= ~  ~ + ~e-2,-~, (9) 

Here, s = 2 sin 0/A and 6s = tip cos 0/A with 0 the Bragg 
angle of the peak maximum, A the wavelength and ~p 
the physical (after separation of machine contributions) 
integral breadth of the peak, L is the coherence length 
and E~ms the root mean square strain perpendicular to 
the reflecting planes. Thus, a plot of (&/s): against &/ 
s 2 is a straight line with its intercept proportional to 
the square of the r.m.s, strain and its gradient pro- 
portional to the reciprocal of the coherence length. 

Samples of as-cast E-phase were examined in a 0-20 
vertical diffractometer using Cu Ka radiation. In order 
to apply the above analysis, the peaks of the B-phase 
were scanned with a step size of 0.02 ° 20, allowing 
20 s per step. A divergence slit of width ½° and a 
receiving slit of 0,2 mm were used, together with a 
graphite monochromator. The observed peak widths flo 
were extracted using a fitting procedure [24] which 
includes Cauchy and Gaussian contributions in the peak 
shape. 

An estimate of the machine contribution to the peak 
width ~m was  made by running well annealed quartz 
crystals under identical conditions. The machine con- 
tribution was then separated from the observed peak 
width/30 to obtain the physical width ~p of the peaks 
using the parabolic correction [23]: 

A plot of (&/s) 2 vs.  &Is 2 is shown in Fig. 7. All the 
points do not seem to fall on a straight line, and this 
may indicate different coherence lengths and strains 
in different crystallographic directions. 

Even in the case of such anisotropy, two or more 
orders of reflections from the same set of planes can 
be used to separate the size and strain contributions. 
For the present data this is possible only for the 110 
and 220 reflections, and the line joining these two points 
is indicated in Fig. 7. The negative slope would indicate 
an impossible negative coherence length. It seems that 
within experimental error the slope may be taken as 
zero, corresponding to a very large coherence length. 
This fact is consistent with the very large grains seen 
in optical micrographs and absence of any sub-grains 
in transmission electron micrographs [7]. In the case 
of very large coherence length, the size contribution 
to the width of a peak is negligible. The r.m.s, inho- 
mogeneous strain which will give the observed peak- 
breadth is 5.5x10 -3. This strain value is comparable 
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with that found in cold-worked metals and alloys. It 
can thus be concluded that the inhomogeneous strain 
content of the as-cast CrTi samples is rather high. 
Using an isotropic modulus of 100 GPa gives an estimate 
of strain energy as 1.5 × 10 6 J m -3. With a molar volume 
of 10 -5 m 3 mo1-1 this is equivalent to 15 J mo1-1. 
This would correspond to a very high defect density 
in the as-cast fl-phase. Blatter and von Allmen suggest 
that such defects can destabilize the crystalline/3-phase 
leading to vitrification. However, the energy involved 
is still small and would barely affect the equilibrium 
shown in Figs. 3 or 6. 

The large grain size of the samples leads to problems 
in the present X-ray diffraction analysis. Each peak in 
a diffractometer trace comes from a different subset 
of grains (except when they are different orders of the 
same reflection), where each subset includes a rather 
small numbers of grains (expected from grain size and 
penetration depth to be 10-50). Thus the size and 
strain broadening of a peak arise from imperfect av- 
eraging and may not yield a good fit by the above 
procedures. Methods to obtain a smaller grain size (e.g. 

grinding) would risk affecting the strain to be measured. 

4. Coherent spinodal temperatures of/3-Cr-Ti 

If the fl-phase of Cr-Ti unstable, an alternative to 
amorphization may be spinodal decomposition. In this 
section we consider this possibility. 

According to Cahn [25], in the regime of coherent 
spinodal of a cubic crystal 

a2G 2 
-~£ + 2r/Y,,,~.,V.~<~O (11) 
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where G is the chemical free energy, x the atom fraction 
(of chromium in the present case), ~7=0 In a/ik and 
Vm is the molar volume of the alloy. Yuv,, is an effective 
modulus defined in terms of the three elastic moduli 
C~1, C44 and C~z of a cubic crystal as follows: 

1 
Y.~., = ~ (C,1 + 2C12) 

[ C,a+2C,2 ] 
× 3 -  Cla +2(2C44-Caa +Ca2)(lZm2+mZnZ+n2F) 

(12) 

Here, l, m and n are the direction cosines of the 
direction (uvw). The equality in eqn. (11) defines the 
coherent spinodal temperature for instability against a 
composition wave in the direction (uvw). 

4.1. Parameters for Cr-Ti 
A discussion follows of the available values of the 

parameters G, ~7, Yuvw for the /3-phase, all of which 
are functions of composition x and temperature T. 

4.1.1. Chemical free energy G s 
The molar chemical free energy G s of the/3-phase 

used for this calculation is the value obtained by Murray 
[18], from phase diagram fitting. Differentiating Mur- 
ray's expression and substituting the fitted parameter 
values we obtain: 

= T  R x(--~_x)+ 13.34 -3600x-47534 (13) 

where R is the gas constant, T the absolute temperature 
and x the atom fraction of chromium. 

4.1.2. Fractional linear expansion due to composition 
change ~7 
For the /3-phase, ~7 is defined as 

l ( 0 a s l  (14) 
~ =  aS\OXcr] 

where a s is the lattice parameter. To obtain ~7 as a 
function of composition and temperature we need to 
know the composition and temperature dependences 
of a s. Cuff et al. [26] have shown that a s follows Vegard's 
law at room temperature, i.e. varies linearly with com- 
position. Using the measured linear thermal expansion 
coefficients a of chromium and/3-Ti, 77 can be expressed 
as a function of x and T. Taking acr = 0.28847 nm at 
T=298 K [27], %_ri=0.33162 nm at T=1323 K [28], 
act = 9.4 × 10 - 6 K-  ~ at T = 973 K [29], aS.Ti = 13.6 × 10 - 6 
K -~ at T> 1173 K [28] we obtain the lattice parameter 
in nanometres: 

a s = 0.3316211 + 13.6 × 10-6(T - 1323)](1 -x )  

+ 0.2884711 + 9.4 × 1 0 - 6 ( T  - 298)]x (15) 

from which ~7(x, T) is easily derived. It should be noted 
that since r/occurs as a square in eqn. (11), the calculated 
values of coherent spinodal temperatures are rather 
sensitive to its value. 

4.1.3. Molar volume, Vm 
The molar volume Vr, of the b.c.c, fl-phase can be 

found simply from its lattice parameter a s and the 
Avogadro number NA. 

4.1.4. Effective modulus Y ,~  
Y, vw (eqn. (12)) depends upon the three elastic moduli 

Cll, Ca2 and C44 of the cubic crystal. Yuvw is needed 
as a function of temperature and composition but the 
data available in the literature for Cll, C:2 and C44 for 
fl-Cr-Ti are very limited. The Fisher and Dever [14, 
15] data outlined above are for C1:, C44 and 
C'[C'=(C1~-C~2)/2] for four alloys with chromium 
fraction x = 0.0698, 0.0936, 0.1381, 0.2837 at 298 K and 
1273 K. Some of these data points are extrapolated 
rather than measured values, and overall their data 
are insufficient to establish the elastic moduli as a 
function of composition and temperature over the entire 
range required for the present calculation. Most im- 
portantly, the composition of interest for spontaneous 
vitrification, 30 and 40 at.% chromium (x= 0.3 and 0.4), 
fall outside the range of the data. Fisher and Dever 
[14] state that the temperature variation of the elastic 
moduli can be taken to be linear. As a first step, the 
coherent spinodal temperatures only for the four com- 
positions for which the data are known are calculated 
in the present work, assuming a linear variation of 
moduli with temperature at these compositions. 

4.2. Existing calculation 
In their study of "black plate" formation in Cr-Ti 

alloys, Menon and Aaronson [10] presented a calculation 
of the coherent spinodal temperatures. Consider an 
alloy with x = 0.2837 atom fraction chromium at room 
temperature T= 298 K. Whether this point (x, T) lies 
in the (100) coherent spinodal regime or not will depend 
on eqn. (11). Equation (13) gives the first term of this 
function as (02G/0xZ) = - 3 . 2 ×  104. The negative sign 
assures us that the point lies within the chemical 
spinodal. The value of 2rl2yaooVm is calculated to be 
4.15 × 10  4 J mol-: .  Thus the value of the left-hand side 
of eqn. (11) is 9.5 × 103, a large positive value clearly 
showing that the point lies much above the coherent 
spinodal and not within it. Calculations shows that the 
coherent spinodal temperature for this composition is 
just 132 K. These facts stand in contrast to what can 
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be concluded from the calculation of Menon and Aar- 
onson [10] which shows the coherent spinodal tem- 
perature for this composition as 791 K (measurement 
from their figure). 

Although Menon and Aaronson [10] used the Fisher 
and Dever [14] data for the elastic moduli, they indicate 
neither the manner in which these data were extrap- 
olated to calculate the coherent spinodal temperatures 
in the range x=  0.25 to x= 0.75, nor the assumed tem- 
perature variation of the moduli. 

4.3. N e w  calculation 
As all the terms in eqn. (11) are dependent on 

temperature, it is necessary to use a numerical routine 
to solve for the temperature at which the equality is 
satisfied. The equation was solved using a bisection 
method. To be able to calculate the coherent spinodal 
temperatures for the entire range of composition, it is 
essential to assume a functional dependence of the 
moduli on composition. In addition to the data of Fisher 
and Dever [14, 15], modulus data for chromium are 
available in Bolef and de Klerk [13]. Although a par- 
abolic fit was used in the previous section (see Fig. 
2(a),(b)) to extend the measurement for four titanium- 
rich alloys to estimate the elastic constants for pure 
titanium, it is not reasonable to expect this to be a 
good fit over the entire composition range. Owing to 
the small number of data points and lack of any 
theoretical ground to assume otherwise, a linear fit was 
assumed to represent the elastic constants over the 
entire range of composition. The temperature depen- 
dence was assumed, as previously, to be linear. Based 
on these assumptions, the calculated (100) coherent 
spinodal temperature curve is shown in Fig. 8. Note 
that not only are the coherent spinodal temperatures 
suppressed below room temperature, but also the critical 
composition (of about 11 at.% chromium) is shifted 
much towards the titanium. Although, owing to the 
extrapolations and uncertainties in the data, these tem- 
peratures may not be very precise, the calculation shows 
that the coherent spinodal lies much below room tem- 
perature. 

In a recent transmission electron microscopy study 
of the Cr-Ti system, Ikematsu et al. [11] studied 30, 
40 and 50 at.% chromium alloys. They found that alloys 
quenched to room temperature after annealing in the 
/3-phase field show spinodal-like contrast in their mi- 
crostructure and satellite spots around the 200 reflection. 
This can be taken as an indication of spinodal decom- 
position. According to this study the (100) modulated 
structure, resulting from spinodal decomposition is seen 
at temperatures as high as 1100 K. This fact is not in 
agreement with the calculation in the present work. 
Furthermore, the experimentally observed temperatures 
are not only above the coherent spinodal temperature 

3 0 0  . . . .  t . . . .  t . . . .  I . . . .  r . . . .  

2 5 0  

2 0 0  

1 5 0  ~z 

1 0 0  

5 0  

0 . . . .  I . . . .  t . . . .  t . . . .  I . . . .  

0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 . 0  

Ti XCr Cr 

F i g .  8 .  T h e  c o h e r e n t  s p i n o d a l  c u r v e  o f  f l - C r - T i  a s  c a l c u l a t e d  i n  

t h e  p r e s e n t  w o r k .  T h e  s p i n o d a l  c u r v e  is  a t  m u c h  l o w e r  t e m -  

p e r a t u r e s  t h a n  in  t h e  c a l c u l a t i o n  b y  M e n o n  a n d  A a r o n s o n  [ 1 0 ] .  

but even higher than the chemical spinodal temperature. 
A problem with the calculations is the use of the 

free energy function of Murray [18] which was obtained 
by fitting phase diagram and is expected to be correct 
inthe temperature range 1473 to 1773 K. In the present 
calculation this free energy function is used down to 
0 K, although as already shown in Fig. 4, extrapolation 
from high temperature data seems to be inappropriate 
even at 400 K. However, it is expected from Fig. 4, 
that the true free energy functions may actually predict 
chemical and coherent spinodal lines that are even 
lower than those predicted by Murray's function. Thus, 
the values calculated on the basis of the free energy 
function of Murray can be considered to be an upper 
bound on the chemical and coherent spinodal tem- 
peratures. 

We consider the CVM estimate of the free energy 
of the fl-phase at 400 K by Sluiter and Turchi [17]. 
As this shows a negative curvature at a composition 
of 0.6 atom fraction chromium (Fig. 4), the point x = 0.6, 
T= 400 K lies within the chemical spinodal. The value 
of (O2G/Ox2)x=O.6 estimated from the diagram is -16.8 
kJ mo1-1. The estimated value of 2 ' t / E y l o o V m  a t  this 
temperature and composition is 76.5 kJ mo1-1. Thus 
eqn. (11) is not satisfied, indicating that the coherent 
spinodal temperature is much below 400 K. Therefore 
the results of Ikematsu et al. [11] still cannot be explained 
on the basis of the free energy as estimated by the 
CVM. 

There are, however, problems in experimental iden- 
tification of spinodal decomposition as well. For ex- 
ample, Khachaturyan [30] has shown that modulated 
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structures giving rise to satellite reflections can also 
form owing to strain-induced coarsening during a nu- 
cleation and growth process. 

5. Conclusions 

We find that the Miedema method does not predict 
spontaneous vitrification of/3-Cr-Ti. It is shown that 
the free energy of the/3-phase predicted by the Miedema 
method is incompatible with the high temperature phase 
diagram data, but at 400 K its predictions are in 
agreement with that of the CVM calculation. However, 
the free energy function derived from the phase diagram 
fitting at high temperature cannot be extrapolated to 
low temperature without introducing inaccuracies and 
this can be attributed to an excess specific heat appearing 
in the/3-phase above 723 K. At 873 K, the temperature 
of spontaneous vitrification, neither the Miedema 
method nor extrapolation from phase diagram fitting 
is expected to give very accurate values. An attempt 
was made to estimate the free energies of the /3 and 
amorphous phases by interpolating between the two 
methods. This estimate also does not suggest any spon- 
taneous vitrification. 

Measurement using X-rays shows that there is a large 
inhomogeneous strain of 5.5 x 10 -3  in our samples of 
the/3-phase. Its contribution to the overall free energy, 
however, is rather insignificant. 

Our calculation shows that, based on the free energy 
derived from the high temperature phase diagram fitting, 
the coherent spinodal of/3-Cr-Ti is suppressed below 
room temperature. Although extrapolation to low tem- 
perature of the free energy function derived at high 
temperature is not reliable, it is expected to give upper 
bounds on the chemical and coherent spinodal tem- 
peratures. An estimation based on the CVM calculation 
of other workers shows that the coherent spinodal 
temperature is at least below 400 K. The apparent 
disagreement with observations of decomposition has 
not been resolved. 
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